统计211

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 4610|回复: 0
打印 上一主题 下一主题

中心极限定理

[复制链接]
跳转到指定楼层
1
发表于 2009-6-23 14:57:56 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
中心极限定理(central limit theorem)
    概率论 中讨论随机变量序列部分和的分布渐近于正态分布的一类定理。概率论中最重要的一类定理,有广泛的实际应用背景。在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象 。最早 的中心极限定理是讨论n重伯努利试验中,事件A出现的次数渐近于正态分布的问题。1716年前后,A.棣莫弗对n重伯努利试验中每次试验事件A出现的概率为1/2的情况进行了讨论,随后,P.-S.拉普拉斯和A.M.李亚普诺夫等进行了推广和改进。自P.莱维在1919~1925年系统地建立了特征函数理论起,中心极限定理的研究得到了很快的发展,先后产生了普遍极限定理和局部极限定理等。极限定理是概率论的重要内容,也是数理统计学的基石之一,其理论成果也比较完美。长期以来,对于极限定理的研究所形成的概率论分析方法,影响着概率论的发展。同时新的极限理论问题也在实际中不断产生。
  中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。
  最常用的三个中心极限定理为:
  独立同分布的中心极限定理
  设随机变量X1,X2,......Xn,......相互独立,服从同一分布,且具有数学期望和方差:E(Xk)=μ,D(Xk)=σ^2>0(k=1,2....),则随机变量之和的标准化变量的分布函数Fn(x)对于任意x满足limFn(x)=Φ(x)
  林德伯格-列维定理
  林德伯格-列维(Lindburg-Levy)定理,即独立同分布随机变量序列的中心极限定理。它表明,独立同分布、且数学期望和方差有限的随机变量序列的标准化和以标准正态分布为极限:
  棣莫佛-拉普拉斯定理
  棣莫佛-拉普拉斯(de Movire - Laplace)定理,即服从二项分布的随机变量序列的中心极限定理。它指出,参数为n, p的二项分布以np为均值、np(1-p)为方差的正态分布为极限。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖 支持支持 反对反对
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则


免责声明|关于我们|小黑屋|联系我们|赞助我们|统计211 ( 闽ICP备09019626号  

GMT+8, 2025-4-18 17:06 , Processed in 0.074476 second(s), 22 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表