统计211

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 4269|回复: 0
打印 上一主题 下一主题

SPSS中绘制ROC曲线

[复制链接]
跳转到指定楼层
1
发表于 2011-7-9 18:07:53 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
ROC(Receiver Operating Characteristic)曲线,用于二分类判别效果的分析与评价.一般自变量为连续变量,因变量为二分类变量.
  
基本原理是:通过判断点(cutoff point/cutoff value)的移动,获得多对灵敏度(sensitivity)和误判率(1-Specificity(特异度)),以灵敏度为纵轴,以误判率为横轴,连接各点绘制曲线,然后计算曲线下的面积,面积越大,判断价值越高. 灵敏度:就是把实际为真值的判断为真值的概率. 特异度:就是把实际为假值的判断为假值的概率. 误判率:就是把实际为假值的判断为真值的概率,其值等于1-特异度. 将绘成的曲线与斜45度的直线对比,若差不多重合,说明自变量对因变量的判断价值很差,若越远离斜45度的直线即曲线下的面积越大,说明自变量对因变量的判断价值越好,即根据自变量可以较为正确的判断因变量.
  
使用SPSS的操作过程如下: Graphs/ROC Curve:Test variable选自变量(连续型变量),state varibale选因变量(二分类变量)display的选项一般全选. 运行结果:1.ROC曲线,可直观地看到曲线形状. 2.Area under the curve:曲线下方的面积,包括面积值,显著性分析,置信区间. 3.Coordinates of the curve:ROC曲线各点对应的灵敏度和误判率.
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖 支持支持 反对反对
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则


免责声明|关于我们|小黑屋|联系我们|赞助我们|统计211 ( 闽ICP备09019626号  

GMT+8, 2025-4-17 14:06 , Processed in 0.076261 second(s), 21 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表