统计211

标题: 变量之间的关联性分析方法选择小结 [打印本页]

作者: 275932488    时间: 2010-6-16 11:53
标题: 变量之间的关联性分析方法选择小结
作者:小蚊子
一、两个变量之间的关联性分析
1.两个变量均为连续型变量
1)小样本并且两个变量服从双正态分布,则用Pearson相关系数做统计分析
2)大样本或两个变量不服从双正态分布,则用Spearman相关系数进行统计分析
2.两个变量均为有序分类变量,可以用Spearman相关系数进行统计分析
3.一个变量为有序分类变量,另一个变量为连续型变量,可以用Spearman相关系数进行统计分析
二、回归分析
1.直线回归:如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,则直线回归(单个自变量的线性回归,称为简单回归),否则应作适当的变换,使其满足上述条件。
2.多重线性回归:应变量(Y)为连续型变量(即计量资料),自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,可以作多重线性回归。
来源:(http://blog.sina.com.cn/s/blog_49f78a4b0100b764.html) - 数据分析的统计方法选择小结(变量之间的关联性分析)_小蚊子_新浪博客
1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
3.二分类的Logistic回归:应变量为二分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。
1)非配对的情况:用非条件Logistic回归
(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
2)配对的情况:用条件Logistic回归
(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
4.有序多分类有序的Logistic回归:应变量为有序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。
1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
5.无序多分类有序的Logistic回归:应变量为无序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。
1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用。




欢迎光临 统计211 (http://tj211.com/) Powered by Discuz! X3.2